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3. Timeline: 
 
Data are available. We anticipate a rapid timeline for this project and aim to have a first draft of 
the manuscript to co-authors in <6 months.  
 
4. Rationale:  
 
 Type 2 diabetes is defined by elevated blood glucose levels, or hyperglycemia. There are 
multiple ways to evaluate glucose levels: fasting glucose and hemoglobin A1c (HbA1c) are 
traditional glycemia biomarkers that are commonly used clinically1, and fructosamine, glycated 
albumin and 1,5-AG are more recently proposed nontraditional glycemia biomarkers. 2,3 While 
each of these biomarkers aim to capture blood glucose levels, they vary in their molecular 
structure, timespan and limitations. Fasting glucose is a direct measure of serum glucose after an 
8 hour fast, representing instantaneous blood glucose levels, but has high intra-individual 
variability and is affected by factors such as acute illness, recent physical activity and time of 
day.4 HbA1c is formed as glucose binds to hemoglobin molecules within erythrocytes, and 
represents average blood glucose over the erythrocyte lifespan, 2-3 months.2 Factors that impact 
erythrocyte turnover, such as hemolytic anemia or severe kidney disease, as well as rare 
hemoglobin variants, alter HbA1c levels in a manner not related to blood glucose levels.5,6 
Fructosamine is glucose bound to total serum protein; glycated albumin is glucose bound to 
serum albumin, and is similar to fructosamine, as the majority of serum protein is comprised of 
albumin.  Both represent average blood glucose over the previous 2-3 weeks.  Fructosamine and 
glycated albumin levels can be affected by changes in serum protein and serum albumin 
metabolism, respectively.7 1,5-AG is a molecule structurally similar to glucose that competes 
with glucose for reabsorption in the kidney at high concentrations of glucose and competes with 
glucose for enternal uptake among persons without diagnosed diabetes (Loomis et al, manuscript 
in preparation).  It represents glycemic excursions over the previous 1-2 weeks.8  
 Studying the genetics of these biomarkers is important for two main reasons: it can add to 
the understanding of type 2 diabetes pathophysiology, and it can help identify the limitations of 
the individual biomarkers in accurately reflecting blood glucose levels. We can identify genetic 
variants associated with multiple biomarkers, which gives strong evidence of the variants’ roles 
in regulation of blood glucose concentrations, and we can also take advantage of the biomarkers 
inherent differences to uncover various aspects of diabetes biology that might be captured by one 
biomarker but missed by another. In addition, because none of these glycemia biomarkers are 
perfect indicators of hyperglycemia, their levels may be influenced by nonglycemic (non 
diabetes-related) factors.9,10 Thus, we may identify significant variants in or near genes with 
known functions related to the nonglycemic portion of the biomarkers (eg, variants that affect 
serum albumin for glycated albumin), indicating limitations of the measured biomarker levels to 
accurately reflect glucose. These genetic limitations are important to understand for the clinical 
utility of these markers; if nonglycemic genetic variants strongly impact glycemic biomarker 
levels, this may need to be taken into account in the interpretation of these biomarkers as 
measures of glycemic control. 
 The genetics of fasting glucose and HbA1c have been well characterized.11 The majority of 
HbA1c genetic variants that have been discovered have been in or near genes involved in red 
blood cell turnover, highlighting HbA1c limitations in reflecting blood glucose levels.10,9 
Multiple genetic variants associated with fasting glucose are not associated with HbA1c.12 This 



could partially be due to sample size (fasting glucose GWAS are larger than HbA1c GWAS) but 
could also reflect diabetes-relevant genetics that are not captured by HbA1c alone. 
 The genetics of fructosamine, glycated albumin and 1,5-AG have been less well studied. 
With the exception of a GWAS and whole exome sequencing analysis of 1,5-AG as part of large 
biomarker panels13,14, two in-progress manuscripts of GWAS for fructosamine/glycated albumin 
and 1,5-AG in ARIC constitute the literature on fructosamine, glycated albumin and 1,5-AG 
genetics. The fructosamine and glycated albumin GWAS has identified a likely biomarker-
specific association, and a variant associated with other glycemic biomarkers.  The GWAS of 
1,5-AG has identified seven significant variants representing a novel, potentially diabetes-related 
pathway not captured by other glucose biomarkers. While these GWAS capture common genetic 
variants, the genetic architecture likely also includes rare coding variants, which GWAS do not 
capture. We will examine exome sequencing data to study rare coding variants that will add to 
the picture of fructosamine, glycated albumin and 1,5-AG genetics, leading to a better 
understanding of their respective limitations as glucose biomarkers and the understanding of 
diabetes pathophysiology. 
 
5. Main Hypothesis/Study Questions: 
 
In this study, we will identify and characterize the associations between low frequency and rare 
(MAF<0.05), exonic variants with fructosamine, glycated albumin and 1,5-AG in participants 
from the ARIC study 
 
Hypothesis: There are rare variants that contribute to the genetic architecture of fructosamine, 
glycated albumin and 1,5-AG. These rare variants reflect genetic control of both glycemic and 
nonglycemic properties of nontraditional glycemic biomarkers. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study population: Whole exome sequencing data is available for approximately 10,000 
individuals in the ARIC study (approximately 2,000 blacks, 8,000 whites).  
 
Study design: Analysis using glycemic biomarker (fructosamine, glycated albumin and 1,5-AG) 
data collected at ARIC visit 2 (1990-1992).  Blood for genetic data was collected at visit 1 
(1987-1989), but as the DNA sequence does not change over time, it is acceptable to collect 
exposure (DNA) and outcome (markers of glycemia) variables at different study visits. 
 
Inclusion/exclusion ARIC individuals with consent for genetics studies, and with exome 
sequencing data that has passed standard (ARIC approved) quality thresholds will be included. 
We will exclude individuals without valid fructosamine, glycated albumin and 1,5-AG data 
available and individuals with prevalent diabetes at visit 2, (defined by self-reported physician 
diagnosed diabetes or taking diabetes medication) when fructosamine, glycated albumin and 1,5-
AG were measured. 
 
Exposure variables: Genetic variants sequenced across the exome.  



 
Exome sequencing data 
DNA was extracted from blood collected at visit 1 from ARIC participants.  All sequencing was 
done as part of the CHARGE consortium at the Baylor College of Medicine Human Genome 
Sequencing Center (HGSC). Samples were pooled and sequenced using paired-end sequencing, 
run on the Illumina HiSeq 2000 or 2500 platform (San Diego, CA), and exome capture 
performed with VCRome 2.1 (NimbleGen, Inc., Madison, WI).  Sequence alignment and variant 
calling were done with the Mercury pipeline in the DNAnexus, and reference sequence mapping 
was done using the Burrows-Wheeler alignment tool with the Genome Reference Consortium 
Human Build 37 reference sequence.  Aligned reads were then recalibrated using the Genome 
ANalysis ToolKit (GATK) and allele calling and VCF creation was done with the Atlas2 suite 
(Atlas-SNP and Atlas-Indel).   
 
Exome Sequencing Quality Control 
Standard quality control exclusion measures were implemented to ensure accurate, reliable 
results. Single nucleotide variants (SNVs) were excluded if they met any of the following 
criteria: posterior probability<0.95, variant read count <3, variant read ratio <0.25 or >0.75, 
strand bias >99% in single direction, total convergence <10 fold for SNVs (<30x for indels), 
outside exon capture regions, monomorphic variant, missing rate >20%, mappability score <0.8, 
mean depth coverage >500 fold, Hardy Weinberg Equilibrium p<5x10-6 in ancestry-specific 
groups.  Samples were excluded if they had >20% missing data or beyond 6 standard deviations 
from the mean read depth, singleton count, heterozygote to homozygote ratio, or transition to 
transversion (Ti/Tv) ratio.  After quality control, 2,556,859 SNVs and 76,133 indels remained, 
and 7,810 European Ancestry individuals and 3,180 African Ancestry individuals remained.   
 
Outcomes: Fructosamine, glycated albumin, 1,5-AG 
 
Fructosamine (Roche Diagnostics, Indianapolis IN, USA), glycated albumin (Asashi Kasei GA-
L, Tokyo, Japan) and 1,5-AG (GlycoMark assay implemented on the Roche ModP, Wiston-
Salem, NC) were measured in 2012-2013 using a Roche Modular P800 system from serum 
collected at visit 2 (1990-92) and stored at -70oC.15  
 
Covariates: Age (years) at visit 2, sex, study center and significant (p<0.05) principal 
components. 
 
Data analysis:  
 
Single variant analysis 
Variants have been annotated with functional categories using ANNOVAR and dbNSFP v2.0 ref 
genome GRCh37 and NCBI RefSeq.  We will perform single variant analyses separately by 
ethnic group and for each glycemic biomarker.  Analyses will be linear regression controlling for 
age, sex, study center and relevant principal components, and run using the comprehensive 
SeqMeta R package. To prioritize potentially causal and rare variants, we will exclude common 
variants (MAF>5%) and restrict analysis to variants predicted to be deleterious, namely 
missense, nonsense, frameshift and splice-site variants.  
 



Gene-based analysis 
To augment power for situations where multiple rare variants affect association with a 
phenotype, methods for aggregating sequencing data into units (eg genes or pathways) have been 
developed. Each method has unique strengths and limitations, so we will evaluate results from 
three different methods: a score test with a MAF threshold of <0.05, a burden test and the 
Sequence Kernel Association Test (SKAT, a kernel based, variance components tests). Burden 
tests collapse variants into a score which is then evaluated in a regression framework for 
association with the phenotype, and have greater power when variants are associate with the 
phenotype in the same direction, but lose power when the associations are in different directions. 
Variance components tests evaluate the variance of aggregated genetic effects with the 
phenotype. These tests have greater power when fewer variants are causal or affect risk in both 
directions. We will run the score test, burden and SKAT, implemented using the SeqMeta 
package described above.  We will perform analyses separately by ethnic group and for each 
glycemic biomarker.   
 
Comparing rare exonic variants between traditional and nontraditional biomarkers of glycemia 
For both single variant and gene based analyses, I will compare results from nontraditional 
glycemic biomarkers with type 2 diabetes variants previously identified using traditional 
glycemic markers (fasting glucose and HbA1c).  Overlap between the genetic variants associated 
with traditional and nontraditional biomarkers of glycemia will likely indicate rare, potentially 
causal variants that are relevant to type 2 diabetes pathogenesis by excluding variants that show 
an association with a single biomarker due to measurement error rather than a true association 
with hyperglycemia. We will also evaluate individuals who develop diabetes after visit 2 for 
enrichment of any significant variants we find associated with fructosamine, glycated albumin 
and 1,5-AG. 
 
Limitations:  
 
Exome sequencing focuses on the coding region of the genome, and cannot capture variants in 
the noncoding intronic and intergenic regions.  While this will be important for future studies to 
investigate, there is still a great deal of potential to discover important variants associated with 
fructosamine, glycated albumin and 1,5-AG. In addition, we are limited in our power to detect 
associations of rare alleles and more modest effect sizes. 
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